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Introduction  
Welcome to “HTML & CSS: A Practical Guide”, a comprehensive course 

designed to equip you with the essential skills needed to create adaptive and 

functional web pages.

In this course, we embark on an exciting journey through the fundamental 

building blocks of web development: HTML (HyperText Markup Language) 

and CSS (Cascading Style Sheets). Whether you’re a complete beginner or 

someone looking to refine their existing knowledge, the practical examples 

in this course will provide you with hands-on experience, enabling you to 

design and structure web content effectively, creating seamless and 

responsive designs that captivate users across an array of devices.

Let’s unlock the world of web development and lay the groundwork for your 

successful journey in creating stunning and user-friendly websites.
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HTML Basics  
HTML and CSS are the most fundamental building blocks of a webpage. It is 

your first step towards becoming a web developer. HTML (HyperText 

Markup Language) defines the structure and content of the webpage, while 

CSS (Cascading Style Sheets) defines the webpage's presentation and 

appearance. Together, they form the colorful webpages you see today.

This course on HTML and CSS will cover everything you need to know about 

these technologies. By the end of this course, you will be able to create 

webpages that are visually appealing on devices of all sizes. It doesn't matter 

if you're a beginner or have some experience since this course is designed to 

help you learn and grow. Don't worry if you don't have any prior knowledge, 

as we'll start from the basics and work our way up together.

What is HTML?  

HTML, short for HyperText Markup Language, is the standard markup 

language used to create webpages. It defines the structure and content of 

webpages using elements and tags, such as headings, paragraphs, images, 

links, forms, and more. These elements instruct web browsers on how to 

display the content of a webpage.

To start writing HTML code, you can head over to W3Schools' online HTML 

editor.
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On the left side, you will find the HTML source code, which is essentially the 

blueprint for what will be displayed. The browser takes this blueprint and 

transforms it into the webpage you see on the right side.

You can modify the source code directly to see how it affects the displayed 

webpage. Once you've made your desired changes, simply click the Run 

button, and the right panel will reflect the alterations.
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Congratulations! Now you are officially a programmer capable of building 

webpages. However, this is only the beginning, there is still a lot more to be 

done before you can create fully functional and visually pleasing webpages.

Prepare your computer for web 
development

 

First of all, you must ensure your computer is ready for web development. A 

basic online editor is not going to be enough this time. To get started, make 

sure you have a web browser installed. Any popular web browser on the 

market, such as Google Chrome, Microsoft Edge, Safari, or Firefox, should 

be sufficient for this course. You may download and install the browser of 

your choice from the linked websites.
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In addition, you'll need a code editor to write and edit your code. Visual 

Studio Code is a great option for beginners, and it's the most popular code 

editor out there. Simply download the appropriate installer for your 

operating system from their official website.

After you've installed VS Code, make sure to install the Live Server 

extension as well. Navigate to the Extensions tab on the left sidebar, and 

type in Live Server in the search box. From there, you'll be able to download 

and install the extension with ease.
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This extension will create a local development server with the auto-reload 

feature. For example, create a new work directory and open it using VS 

Code.
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Create a new file named index.html  under this directory. The .html  

extension indicates that this is an HTML document. Type in !  in the VS 

Code editor, and you will see suggestions like this:
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This is a shortcut that allows you to create HTML documents quickly. Select 

the first option, and the following code should be created.

<!DOCTYPE html>
<html lang="en">

<head>

    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, 
initial-scale=1.0">

    <title>Document</title>
</head>

<body>

</body>

</html>
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Notice that at the bottom right corner of the VS Code window, there is a Go 

Live button.

Clicking this button will activate the Live Server extension. A dev server will 

be started, hosting the index.html  file you created.

Of course, right now, the file is still empty. Add something between the 

<body>  and </body>  tags.

No. 13 / 334



The webpage will be refreshed with the new content.

The structure of an HTML document  

<!DOCTYPE html>
<html lang="en">

<head>

    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, 
initial-scale=1.0">

    <title>Document</title>
</head>

<body>

    Hello, world!
</body>

</html>
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A typical HTML document always has the following structure:

The <!DOCTYPE html>  tag defines the document type, and when a web 

browser encounters <!DOCTYPE html> , it understands that the page should 

be parsed and displayed according to the rules and specifications of HTML5, 

the latest version of HTML. This ensures that modern browsers interpret 

the webpage's content and layout correctly.

Everything else in the file should be enclosed inside an <html>  element, 

defined by an opening tag ( <html> ) and a closing tag ( </html> ). 

lang="en"  is called an attribute, which tells the browser and search engine 

that English is the primary language used for the content of this webpage.

Inside the <html>  element, there are two child elements, <head>  and 

<body> . <head>  contains metadata and other information about the 

HTML document. This information will not be displayed in the browser but 

is often used by search engines for SEO (Search Engine Optimization) 

purposes. <body> , on the other hand, contains the main content of the 

webpage that is visible to the users, and for that reason, it is also the part of 

the HTML file we are going to focus on in this course.

Elements and attributes

<!DOCTYPE html>
<html lang="en">

<head>

    . . .
</head>

<body>

    . . .
</body>

</html>

1

2

3

4

5

6

7

8

9

No. 15 / 334



Elements and attributes  

Let's take a closer look at the example and notice that the HTML document 

is made up of different elements in a nested structure. In HTML, most 

elements have both an opening tag and a closing tag:

In this example, <tag>  is called the opening tag, and </tag>  is the closing 

tag, and together, they form an HTML element. The element could hold 

content between the opening and closing tags.

The element can also contain other elements, forming a nested structure.

Inside the opening tag, you can define attributes, which are used to specify 

additional information about the element, such as its class , id , and so 

on.

<tag>. . .</tag>1

<tag>Hello, world!</tag>1

<tag>

    <tag>. . .</tag>
    <tag>
        <tag>. . .</tag>
    </tag>
</tag>
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<tag attribute="value">. . .</tag>1
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The attribute is usually in a key/value pair format, and the value must 

always be enclosed inside matching quotes (double or single).

There are some exceptions to these general formats. For example, the <br>  

element, which creates a line break, does not need a closing tag. Some 

attributes, such as multiple , do not require a value. We will discuss these 

exceptions later in this course as we encounter specific examples.

However, you should remember that if an element does require a closing 

tag, then it should never be left out. In most cases, the webpage could still 

render correctly, but as the structure of your HTML document grows more 

complex, unexpected errors may occur.

Headings and paragraphs  

The paragraph is probably the most commonly used HTML element, 

defined by <p></p> . It is a block-level element, meaning each paragraph 

will start on a new line.

<body>

    <p>This is the first paragraph.</p>
    <p>This is the second paragraph, which starts on a new 
line.</p>

</body>
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Without the <p>  element, your browser will automatically ignore the extra 

white spaces and render the text in a single line.

<body>

    This is the first paragraph.
    This is the second paragraph, which starts on a new 
line.

</body>
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You'll need to use the <br>  element if you want a line break inside one 

paragraph. This is one of those HTML elements that does not require a 

closing tag.

<body>

    <p>This is the first paragraph.<br>
    This is the second paragraph, which starts on a new 
line.</p>

</body>
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