
HTML & CSS
A Practical Guide

By Eric Hu
www.ericsdevblog.com

Introduction

HTML Basics

What is HTML?

Prepare your computer for web development

The structure of an HTML document

Elements and attributes

Headings and paragraphs

Formatting elements

Styling HTML elements

Links

Lists

Tables

Images and file paths

Forms

Layout elements

Block elements vs. inline elements

The head section

Conclusion

CSS Basics

What is CSS

How to select HTML elements

The class and id selectors

The combinator selectors

The pseudo-selectors

Other selectors

Defining colors in CSS

RGB color

HEX color

No. 1 / 334

HSL color

Working with typography

Text alignment

Text decoration

Text spacing

Using a font

Customizing font

Conclusion

Advanced HTML and CSS

How are the elements displayed

Border, margin, and padding

Resizing elements

Deal with content overflow

Box sizing

Functions and variables

Applying filters

Z-index and backdrop filters

CSS transitions

CSS animations

Styling backgrounds

Styling lists

Styling tables

Conclusion

How to Position and Arrange Content Using CSS

Display types

Inline

Block

Inline block

display vs. visibility

How to position elements

No. 2 / 334

Relative position

Fixed position

Absolute position

Sticky position

Transforming elements

How to align elements

Horizontally center an element

Vertically center an element with padding

Vertically center an element using position and transform

Left and right align elements

Creating grids

Grid columns and rows

Grid gaps

Grid items

Grid alignment

Vertical alignment

Horizontal alignment

Flexbox layout

A practical example

Conclusion

Responsive Design

Setting the viewport

Media queries and breakpoints

Creating responsive page layouts

Using flexbox

CSS grids

Legacy layout method

Responsive layouts without media queries

Responsive images

Responsive typography

No. 3 / 334

Conclusion

Recreating YouTube Using HTML and CSS

Creating the page layout

The HTML document

Navbar layout

Sidebars

The content section

Building the navigation bar

Building the sidebar

Building the video card component

Conclusion

Some CSS Tools and Frameworks

CSS preprocessor

PostCSS

Popular CSS frameworks

HTML & CSS Best Practices

1. Use semantic HTML tags

2. Maintain clear indentation and formatting

3. Comment your code

4. Ensure accessibility and responsiveness

5. The <head> section is important

6. Separate your files

7. Choose meaningful class and ID names

8. Keep selectors simple

9. Keep a consistent style

10. Pay attention to browser compatibility

Conclusion

No. 4 / 334

Introduction
Welcome to “HTML & CSS: A Practical Guide”, a comprehensive course

designed to equip you with the essential skills needed to create adaptive and

functional web pages.

In this course, we embark on an exciting journey through the fundamental

building blocks of web development: HTML (HyperText Markup Language)

and CSS (Cascading Style Sheets). Whether you’re a complete beginner or

someone looking to refine their existing knowledge, the practical examples

in this course will provide you with hands-on experience, enabling you to

design and structure web content effectively, creating seamless and

responsive designs that captivate users across an array of devices.

Let’s unlock the world of web development and lay the groundwork for your

successful journey in creating stunning and user-friendly websites.

No. 5 / 334

HTML Basics
HTML and CSS are the most fundamental building blocks of a webpage. It is

your first step towards becoming a web developer. HTML (HyperText

Markup Language) defines the structure and content of the webpage, while

CSS (Cascading Style Sheets) defines the webpage's presentation and

appearance. Together, they form the colorful webpages you see today.

This course on HTML and CSS will cover everything you need to know about

these technologies. By the end of this course, you will be able to create

webpages that are visually appealing on devices of all sizes. It doesn't matter

if you're a beginner or have some experience since this course is designed to

help you learn and grow. Don't worry if you don't have any prior knowledge,

as we'll start from the basics and work our way up together.

What is HTML?

HTML, short for HyperText Markup Language, is the standard markup

language used to create webpages. It defines the structure and content of

webpages using elements and tags, such as headings, paragraphs, images,

links, forms, and more. These elements instruct web browsers on how to

display the content of a webpage.

To start writing HTML code, you can head over to W3Schools' online HTML

editor.

No. 6 / 334

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_editor

On the left side, you will find the HTML source code, which is essentially the

blueprint for what will be displayed. The browser takes this blueprint and

transforms it into the webpage you see on the right side.

You can modify the source code directly to see how it affects the displayed

webpage. Once you've made your desired changes, simply click the Run

button, and the right panel will reflect the alterations.

No. 7 / 334

Congratulations! Now you are officially a programmer capable of building

webpages. However, this is only the beginning, there is still a lot more to be

done before you can create fully functional and visually pleasing webpages.

Prepare your computer for web
development

First of all, you must ensure your computer is ready for web development. A

basic online editor is not going to be enough this time. To get started, make

sure you have a web browser installed. Any popular web browser on the

market, such as Google Chrome, Microsoft Edge, Safari, or Firefox, should

be sufficient for this course. You may download and install the browser of

your choice from the linked websites.

No. 8 / 334

https://www.google.com/intl/en_ca/chrome/
https://www.microsoft.com/en-us/edge/download
https://www.mozilla.org/en-CA/firefox/new/

In addition, you'll need a code editor to write and edit your code. Visual

Studio Code is a great option for beginners, and it's the most popular code

editor out there. Simply download the appropriate installer for your

operating system from their official website.

After you've installed VS Code, make sure to install the Live Server

extension as well. Navigate to the Extensions tab on the left sidebar, and

type in Live Server in the search box. From there, you'll be able to download

and install the extension with ease.

No. 9 / 334

https://code.visualstudio.com/download

This extension will create a local development server with the auto-reload

feature. For example, create a new work directory and open it using VS

Code.

No. 10 / 334

Create a new file named index.html under this directory. The .html

extension indicates that this is an HTML document. Type in ! in the VS

Code editor, and you will see suggestions like this:

No. 11 / 334

This is a shortcut that allows you to create HTML documents quickly. Select

the first option, and the following code should be created.

<!DOCTYPE html>
<html lang="en">

<head>

 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
initial-scale=1.0">

 <title>Document</title>
</head>

<body>

</body>

</html>

1

2

3

4

5

6

7

8

9

10

11

No. 12 / 334

Notice that at the bottom right corner of the VS Code window, there is a Go

Live button.

Clicking this button will activate the Live Server extension. A dev server will

be started, hosting the index.html file you created.

Of course, right now, the file is still empty. Add something between the

<body> and </body> tags.

No. 13 / 334

The webpage will be refreshed with the new content.

The structure of an HTML document

<!DOCTYPE html>
<html lang="en">

<head>

 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
initial-scale=1.0">

 <title>Document</title>
</head>

<body>

 Hello, world!
</body>

</html>

1

2

3

4

5

6

7

8

9

10

11

No. 14 / 334

A typical HTML document always has the following structure:

The <!DOCTYPE html> tag defines the document type, and when a web

browser encounters <!DOCTYPE html> , it understands that the page should

be parsed and displayed according to the rules and specifications of HTML5,

the latest version of HTML. This ensures that modern browsers interpret

the webpage's content and layout correctly.

Everything else in the file should be enclosed inside an <html> element,

defined by an opening tag (<html>) and a closing tag (</html>).

lang="en" is called an attribute, which tells the browser and search engine

that English is the primary language used for the content of this webpage.

Inside the <html> element, there are two child elements, <head> and

<body> . <head> contains metadata and other information about the

HTML document. This information will not be displayed in the browser but

is often used by search engines for SEO (Search Engine Optimization)

purposes. <body> , on the other hand, contains the main content of the

webpage that is visible to the users, and for that reason, it is also the part of

the HTML file we are going to focus on in this course.

Elements and attributes

<!DOCTYPE html>
<html lang="en">

<head>

 . . .
</head>

<body>

 . . .
</body>

</html>

1

2

3

4

5

6

7

8

9

No. 15 / 334

Elements and attributes

Let's take a closer look at the example and notice that the HTML document

is made up of different elements in a nested structure. In HTML, most

elements have both an opening tag and a closing tag:

In this example, <tag> is called the opening tag, and </tag> is the closing

tag, and together, they form an HTML element. The element could hold

content between the opening and closing tags.

The element can also contain other elements, forming a nested structure.

Inside the opening tag, you can define attributes, which are used to specify

additional information about the element, such as its class , id , and so

on.

<tag>. . .</tag>1

<tag>Hello, world!</tag>1

<tag>

 <tag>. . .</tag>
 <tag>
 <tag>. . .</tag>
 </tag>
</tag>

1

2

3

4

5

6

<tag attribute="value">. . .</tag>1

No. 16 / 334

The attribute is usually in a key/value pair format, and the value must

always be enclosed inside matching quotes (double or single).

There are some exceptions to these general formats. For example, the

element, which creates a line break, does not need a closing tag. Some

attributes, such as multiple , do not require a value. We will discuss these

exceptions later in this course as we encounter specific examples.

However, you should remember that if an element does require a closing

tag, then it should never be left out. In most cases, the webpage could still

render correctly, but as the structure of your HTML document grows more

complex, unexpected errors may occur.

Headings and paragraphs

The paragraph is probably the most commonly used HTML element,

defined by <p></p> . It is a block-level element, meaning each paragraph

will start on a new line.

<body>

 <p>This is the first paragraph.</p>
 <p>This is the second paragraph, which starts on a new
line.</p>

</body>

1

2

3

4

No. 17 / 334

Without the <p> element, your browser will automatically ignore the extra

white spaces and render the text in a single line.

<body>

 This is the first paragraph.
 This is the second paragraph, which starts on a new
line.

</body>

1

2

3

4

No. 18 / 334

You'll need to use the
 element if you want a line break inside one

paragraph. This is one of those HTML elements that does not require a

closing tag.

<body>

 <p>This is the first paragraph.

 This is the second paragraph, which starts on a new
line.</p>

</body>

1

2

3

4

No. 19 / 334

	Introduction
	HTML Basics
	What is HTML?
	Prepare your computer for web development
	The structure of an HTML document
	Elements and attributes
	Headings and paragraphs
	Formatting elements
	Styling HTML elements
	Links
	Lists
	Tables
	Images and file paths
	Forms
	Layout elements
	Block elements vs. inline elements
	The head section
	Conclusion

	CSS Basics
	What is CSS
	How to select HTML elements
	The class and id selectors
	The combinator selectors
	The pseudo-selectors
	Other selectors

	Defining colors in CSS
	RGB color
	HEX color
	HSL color

	Working with typography
	Text alignment
	Text decoration
	Text spacing
	Using a font
	Customizing font

	Conclusion

	Advanced HTML and CSS
	How are the elements displayed
	Border, margin, and padding
	Resizing elements
	Deal with content overflow
	Box sizing

	Functions and variables
	Applying filters
	Z-index and backdrop filters

	CSS transitions
	CSS animations
	Styling backgrounds
	Styling lists
	Styling tables
	Conclusion

	How to Position and Arrange Content Using CSS
	Display types
	Inline
	Block
	Inline block
	display vs. visibility

	How to position elements
	Relative position
	Fixed position
	Absolute position
	Sticky position

	Transforming elements
	How to align elements
	Horizontally center an element
	Vertically center an element with padding
	Vertically center an element using position and transform
	Left and right align elements

	Creating grids
	Grid columns and rows
	Grid gaps
	Grid items

	Grid alignment
	Vertical alignment
	Horizontal alignment

	Flexbox layout
	A practical example
	Conclusion

	Responsive Design
	Setting the viewport
	Media queries and breakpoints
	Creating responsive page layouts
	Using flexbox
	CSS grids
	Legacy layout method
	Responsive layouts without media queries

	Responsive images
	Responsive typography
	Conclusion

	Recreating YouTube Using HTML and CSS
	Creating the page layout
	The HTML document
	Navbar layout
	Sidebars
	The content section

	Building the navigation bar
	Building the sidebar
	Building the video card component
	Conclusion

	Some CSS Tools and Frameworks
	CSS preprocessor
	PostCSS
	Popular CSS frameworks

	HTML & CSS Best Practices
	1. Use semantic HTML tags
	2. Maintain clear indentation and formatting
	3. Comment your code
	4. Ensure accessibility and responsiveness
	5. The <head> section is important
	6. Separate your files
	7. Choose meaningful class and ID names
	8. Keep selectors simple
	9. Keep a consistent style
	10. Pay attention to browser compatibility
	Conclusion

